

Whitepapers

Crystal Reports For VS.Net 2003 Startup Guide
June 2004

Version 1.0

© 2004 Business Objects Corp. All rights reserved.

Business Objects Starter Kit: Crystal Reports

Paul Delcogliano, Progressive Systems Consulting, Inc., http://www.progsys.com

Paul Delcogliano, Progressive Systems Consulting, Inc., http://www.progsys.com

Crystal Reports For VS.Net 2003 Startup
Guide
Paul Delcogliano, Progressive Systems Consulting, Inc.

June 2004

Summary: This whitepaper provides step-by-step instructions on the details of
generating and displaying reports in various deployment scenarios and application
environments using Crystal Reports for Visual Studio.NET 2003.

Overview

What is the Crystal Reports For VS.NET 2003 Startup Guide?
The Crystal Reports For VS.Net 2003 Startup Guide (hereafter known as “the guide”) is
intended to get competent .NET developers, who are new to Crystal Reports for Visual
Studio.NET 2003 or familiar with older versions, up to speed quickly, using the product
in a variety of reporting scenarios. The guide presents a scenario-driven approach to
designing and building reports with Crystal Reports for Visual Studio.NET 2003. The
guide walks through five different reporting scenarios. The scenarios increase in
difficulty, and are described below:

Scenario Description

Basic A Tabular report, designed using the Expert, utilizing a standalone
report file deployed as part of a Windows application. In this scenario,
data from a single table is retrieved using OLE DB.

Intermediate A Master-Detail report with drill-down capabilities, designed
manually, utilizing an embedded report file and a ReportDocument
object. In this scenario, the report is deployed as part of a Web
application. Data is retrieved from views involving multiple tables
using OLE DB.

Visual A Graphical report, designed using the Expert, utilizing an embedded
report file and a ReportDocument object. This report is deployed as
part of a Windows application. Data is retrieved from a parameterized
stored procedure using OLE DB.

Sub-report A complex report that performs multiple queries through the use of
sub-reports, designed manually, utilizing standalone report files. This
report is deployed as part of a Web application. Data is retrieved from
stored procedures using ADO.NET typed DataSets.

Document A report based off a single result set row, used to produce a contract-
style document, designed manually, utilizing an embedded report file
and a ReportDocument object. This report is deployed as part of a
Web application. Data is retrieved from a parameterized stored
procedure using an ADO.NET typed DataSet. This scenario
demonstrates programmatically exporting the report to PDF format
that is then streamed back to the browser.

Paul Delcogliano, Progressive Systems Consulting, Inc., http://www.progsys.com

The scenarios are designed to illustrate the many powerful features of Crystal Reports
for Visual Studio 2003, including:

• Integration with Visual Studio.NET 2003 (all scenarios.)

• Deployment in different application environments. The Basic and Visual scenarios
demonstrate reporting in a Windows environment. The remaining scenarios
illustrate reporting in a Web environment.

• Ability to report from multiple data sources, including typed datasets, views,
tables and stored procedures. Typed datasets are displayed in the Sub-report and
Document scenarios. Techniques using views and stored procedures are shown in
the Intermediate, Visual, Sub-report and Document scenarios.

• Manual and wizard based methods for building reports. The Basic and Visual
scenarios generate reports the report Experts. The Intermediate, Sub-report and
Document scenarios create reports manually.

• Support for different report mediums, including report files (all scenarios) and
ReportDocument objects (Intermediate, Visual, and Document scenarios).

• The Intermediate and Visual scenarios illustrate techniques for grouping and drill-
down reporting capabilities.

• The Document scenario describes how to export files to different formats.

Prerequisites
The guide provides the most benefit to developers familiar with Visual Basic.NET and the
Visual Studio.NET 2003 environment. All of the samples in this guide retrieve data from
the Northwind database available with SQL Server. SQL Server is commonly used by
developers writing applications with Visual Studio.NET. The techniques demonstrated to
generate reports with SQL Server data are portable to other databases, although minor
modifications may be required.

Sample Code
This guide discusses developing reporting solutions with Crystal Reports for Visual
Studio.NET in depth. All of the sample code in the guide was developed using Microsoft
® Visual Studio.NET™ 2003 and was written in VB.NET.

The samples used in the guide build on one another, starting with the “Basic” scenario.
In cases where details are given about a common process in a previous scenario, the
current scenario will reference the previous discussion, rather than restating the
process.

The samples accompanying this guide are divided into two projects, one for sample
reports running in a Windows application, and one for sample Web applications. The
Windows samples are located in the CRWindowsSamples project. The Web samples are
located in the CRWebSamples project.

The sample code uses the Northwind database available with SQL Server 2000 or MSDE.
For simplicity, a data link file is included with the sample code. All sample reports
running in a Windows application use the data link file. All sample Web based reports
connect to the database using “Database Expert” wizard provided by Crystal Reports.
Creating a connection to the database is described in appendix A. Sample windows
applications make database connections using a data link file. The data link file
“Northwind.udl” is included with the sample code.

Paul Delcogliano, Progressive Systems Consulting, Inc., http://www.progsys.com

Scripts Required to Run the Sample Reports

The sample reports rely on custom stored procedures to run. In addition, all of the Web-
based reports use a special SQL Server user account to connect to the database.

Prior to creating any of the sample reports, run the CreateSQLUserForSamples.sql script
file to create the CRReports SQL Server user account and grant it access to the
Northwind database. This script must be run by an account in the sysadmin fixed server
role. Refer to the SQL Server Books Online documentation for more information about
creating SQL Server accounts.

All of the stored procedures required to run the sample reports are found in the
StoredProcsForSampleReports.sql file. As noted in the script file and the stored
procedure comments, only an account with execute permission in the database will be
able to create the stored procedure. Be sure to use a login account with sufficient
privileges when running the script file.

Basic Reporting Scenario
The Basic Reporting scenario illustrates the simplicity of adding reporting capabilities to
a Windows application. This scenario generates a report using the Crystal Reports
design-time wizards, a.k.a. Experts, integrated with Visual Studio.NET. No code is
necessary to generate this report. This scenario displays a report of Customers from the
Northwind database in a Windows application.

To create the sample, create a new Visual Basic Windows Application Project in VS.NET.
Name the new application “CRWindowsSamples”. Once the project is created, right-click
on the project name in the Solution Explorer window and select “Add | Add New Item…”
from the context menu. A window will appear, similar to the one in the figure below,
presenting several object types that can be added to the project. Select the Crystal
Report icon from the right side of the form and name the object “TabularReport.rpt”.
Click the “Open” button to add the report to the project.

Meet the Experts
In addition to adding the report file to the project, clicking the “Open” button starts the
“Crystal Report Gallery” wizard. This wizard presents three “Experts” for creating the
report:

• Report Expert

• Blank Report

• Existing Report

The Report Expert guides report creation using a series of wizards and dialogs. There are
several Report Experts to choose from including, Standard, Cross-tab, Sub-report, and
Drill Down.

The Blank Report option creates a report from scratch.

Paul Delcogliano, Progressive Systems Consulting, Inc., http://www.progsys.com

The Existing Report option creates a new report from an existing report. The figure
below shows the Crystal Report Gallery wizard.

Choose the Standard report expert from the wizard, and then click OK. The Standard
Expert creates a tabular report; data is laid out as columns and rows. Click OK to start
the Standard Expert wizard.

As with most of the Experts, you must first make a connection to the data. There are a
number of possible data sources including, OLE DB, ODBC, ADO.NET, Excel, etc. The
section Database Connection Used by Windows Based Reports in appendix A describes
how to establish the connection to the database using a data link file.

After the database connection is established, the Standard Expert wizard form will return
showing the Northwind database node under the OLE DB node as an available data
source. Expand the Northwind node to the Tables node. Select the Customers table from
the treeview and click the Insert Table button. Clicking the button adds the Customers
table to the report, as shown in the following screen shot.

Paul Delcogliano, Progressive Systems Consulting, Inc., http://www.progsys.com

Specify which columns from the table should appear on the report. Click the Next >>
button to select the columns to display on the report. Select the following columns:

• CustomerID

• CompanyName

• ContactName

• Address

• City

• Region

• PostalCode

• Country

After selecting the columns, click the Add -> button. The Standard Expert form should
look like the following:

Paul Delcogliano, Progressive Systems Consulting, Inc., http://www.progsys.com

Click on the Style tab to add a report title and to format the report’s style. The
selections on the Style tab are optional. The Expert provides a list of standard styles that
can be applied to the report. Enter “Customer Listing Report” in the Title textbox.
Choose the Maroon/Teal Box style from the list of styles available.

Paul Delcogliano, Progressive Systems Consulting, Inc., http://www.progsys.com

Click the Finish button to generate the report file. The report will be shown in design
view within the Visual Studio.NET IDE. It should look similar to the following screen
shot.

At this point, the report is created and ready to run. The last few steps involve setting
up a form to host the report. Add a windows form to the project. Click on the tab named
Form1. This will select Form1 so that the CrystalReportViewer control can be added
to it. The CrystalReportViewer control displays a Crystal Reports report at runtime. Find
the CrystalReportViewer control in the Toolbox (it is normally located under the Windows

Paul Delcogliano, Progressive Systems Consulting, Inc., http://www.progsys.com

Forms tab). Drag and drop the control from the toolbox onto Form1. Set the following
properties of the CrystalReportViewer control:

Property Name Property Value

Name ReportViewer

Dock Fill

There is one more property to set before this is a complete solution. The
CrystalReportViewer’s “ReportSource” property binds the report viewer control to the
report file. Click on the ReportSource property in the Properties window. A drop down
will appear allowing for the selection of the report file to bind to the viewer control.
Browse to the TabularReport.rpt file and select it. The file should be located in the
CRWindowsSamples’s project folder.

The application is now ready to run. Press F5 to start the application and display the
report. The report output should look similar to the following:

The following list summarizes the steps taken in this section to create the sample report.

• Add a new Crystal Report object to the project.

• Layout the report using the Standard Expert

o Connect to the database

o Add a table to the report

o Select the columns from the table to appear on the report

o Set the report style

• Add a CrystalReportViewer control to the windows form in the project.

• Bind the report to the viewer by setting the viewer’s ReportSource property to
the report file.

Paul Delcogliano, Progressive Systems Consulting, Inc., http://www.progsys.com

Paul Delcogliano, Progressive Systems Consulting, Inc., http://www.progsys.com

Scenario Conclusion

The Basic scenario illustrates how easy it is to add reporting to a windows application.
However, most real-world reporting requirements are more involved than simply listing
values from a table. The “Intermediate” scenario walks through the creation of a report
that is more commonly seen in application development, the master-detail report.

Intermediate Reporting Scenario
The Intermediate reporting scenario demonstrates how to manually create a web-based,
master-detail report with drill-down capabilities. This scenario also shows how to bind
the report to a ReportDocument object.

Delivering reports over the Web is a powerful feature. With Web based reporting, users
have access to data 24 hours a day, 7 days a week, regardless of their location.
Deploying reports over the Web is a straightforward and simple process, not much more
complicated that the Basic Reporting scenario described above.

The report demonstrated in this section uses the “Products by Category” view from the
Northwind database. The view returns category (master) and products (detail) data from
the database. The report is grouped by category name, calculating the total number of
products available under each category. Clicking on a category name expands the
category and displays the list of products under the category. Each product is displayed
with the number of units in stock.

To create the report, start by creating a new ASP.NET Web application. Name the new
application “CRWebSamples”. Once the project is created, right-click on the project
name in the Solution Explorer window and select Add | Add New Item… from the
context menu. Select the Crystal Report icon from the right side of the dialog that
appears, and name the object “MasterDetail.rpt”. Click the Open button to add the
report to the Web project.

The report used for the Intermediate Reporting scenario is created manually using the
Blank Expert. When the Crystal Report Gallery wizard loads, choose the Blank Expert
option and click the OK button. A blank report form loads in the designer.

Right click on the report form in the designer to bring up a context menu. From the
menu choose the Database | Add/Remove Database… option. Choosing this option
starts the Database Expert wizard. The process of selecting a provider and connecting to
the database is described in the section Database Connection Used by Web Based
Reports in appendix A.

Now that a connection is established, expand the Northwind node from the available
data sources list. Continue to expand the list down to the Views node. With the Views

Paul Delcogliano, Progressive Systems Consulting, Inc., http://www.progsys.com

node expanded, double click the Products by Category node. Now the view is listed
under the Selected Tables list. Click OK to close the wizard.

Build a Report from Scratch
All of the fields available from the Products by Category view are available from the Field
Explorer window.

Paul Delcogliano, Progressive Systems Consulting, Inc., http://www.progsys.com

Building a report from scratch involves dragging fields from the Field Explorer onto the
report designer. The following fields should be added to build the sample report.

• Add the following fields to the Report Header Section

o Text Object whose text is “Product by Category Drill Down Report”. Text
object fields can be added to a report by right-clicking on the report and
selecting Insert | Text Object from the menu.

o Insert a Print Date field object by right clicking on the report and choosing the
Insert | Special Field > | Print Date option or by dragging the Print Date
field from the Field Explorer window.

o Insert a Print Time field object by right clicking on the report and choosing
the Insert | Special Field > | Print Time option or by dragging the Print
Time field from the Field Explorer window.

• Add the following fields to the Group Header Section

o Right-click on the report and choose the Insert | Group… option. The
Grouping dialog will begin. Select the field that the report uses to group on,
Products_by_Category.CategoryName from the drop down list. Click OK to
add the group to the report.

Paul Delcogliano, Progressive Systems Consulting, Inc., http://www.progsys.com

o To display a total of the units in stock for each category, right-click on the
report and choose the Insert | Subtotal… option. The Subtotal dialog will
begin. Select the Products_by_Category.UnitsInStock from the Insert a
subtotal for the field drop down list. Click OK to add the field to the report.

• Add the following fields to the report’s Details Section

o Individually drag the ProductName, QuantityPerUnit, and UnitsInStock fields
from the Field Explorer and drop them onto the report’s Details section.

o Right click on the Details section. From the context menu, choose the Hide
(Drill-Down OK) option. Setting this option configures the report to drill
down into the Details section at runtime.

After all of the fields have been added to the report, lay them out similarly to the layout
pictured below.

Paul Delcogliano, Progressive Systems Consulting, Inc., http://www.progsys.com

Once the report is laid out, it needs to be bound to the CrystalReportViewer control.
Unlike the Basic report scenario, which bound the report to the control at design time,
this scenario binds the report to a control at runtime. Click on the WebForm1 tab in
VS.NET. Rename WebForm1 to “frmIntermediate”. Drag and drop the
CrystalReportViewer control from the toolbox onto frmIntermediate. Set its
DisplayGroupTree property to “False”.

This scenario uses the ReportDocument control to bind the report to the
CrystalReportViewer control. The ReportDocument class exposes properties and methods
of a report at runtime. Access to report sections, options (report options, print options,
etc.) and login credentials is available through the ReportDocument class.

The ReportDocument control is located on the Components tab of the Toolbox. Drag the
control from the toolbox and drop it onto frmIntermediate. This will open a dialog,
prompting for the typed ReportDocument class. Reports embedded in the project, like
the MasterDetail report, are available from the drop down. Select the MasterDetail
report. Uncheck the Generate cached strongly-typed report check box and click OK.

Paul Delcogliano, Progressive Systems Consulting, Inc., http://www.progsys.com

This creates a strongly typed ReportDocument named masterDetail1 and adds it to
frmIntermediate. The final step is to bind the ReportDocument to the report viewer. Add
the following lines of code to frmIntermediate’s Page_Load event.

‘ set the database login information

masterDetail1.SetDatabaseLogon("CRReports", "crreports")

‘ bind the ReportDocument object to the report viewer. This will load

‘ the report in the “Intermediate” web page.

CrystalReportViewer1.ReportSource = masterDetail1

The ReportDocument’s SetDatabaseLogin method passes login credentials to the views
used for the report. If the login credentials are not set, or are invalid, an exception will
be thrown and the report will fail to generate.

The application is now ready to run. Press F5 to start the application and display the
report. The report output should look similar to the following:

When the report loads, a listing of products by category is displayed along with the total
products in stock for each category. Clicking on a category name, for example

Paul Delcogliano, Progressive Systems Consulting, Inc., http://www.progsys.com

Beverages, drills-down into the category, showing all of the products that make up the
category and the units in stock for each product, as shown below.

The following list summarizes the steps taken in this section to create the sample report.

• Add a new Crystal Report object to the project.

• Manually layout the report using the Blank Expert

o Connect to the database

o Add the view to the report

o Select columns from the view to appear on the report

o Add a group header section to the report

o Insert a subtotal to the group header section to the report

o Drag and drop fields from the Field Explorer to the report’s details section

o Permit drilling down on the details section through the context menu by
selecting the Hide (Drill-Down OK) option.

• Drag a ReportDocument component from the Toolbox and drop it on the web
form in the project.

• Add code to the form’s Page_Load event to bind the report to the viewer by
setting the viewer’s ReportSource property to the strongly typed
ReportDocument object. The code should also set the database login credentials.

Scenario Conclusion

The “Intermediate” scenario illustrates the grouping and drill-down features available to
a Crystal Reports report. The ReportDocument object, introduced in this scenario,

Paul Delcogliano, Progressive Systems Consulting, Inc., http://www.progsys.com

Paul Delcogliano, Progressive Systems Consulting, Inc., http://www.progsys.com

provides programmatic access to a report. This scenario used it to set the database login
credentials and to bind the report to the report data. In future scenarios it will play a
more prominent role in the report generation process.

The sample reports shown so far have been textual listings of data from the database.
Neither report passed parameters to the queries to get their data. The “Visual” scenario
builds on the previous two reports by adding graphical output and retrieving data by
passing parameters to a stored procedure.

Visual Reporting Scenario
Charts make reports easier to read and provide a quick summary of information to the
user. Not only is charting a means of presenting data — it is also an analysis tool. Users
can drill-down on a chart, or a chart's legend, for detailed information. The Visual
Reporting scenario adds charting components to the report.

This scenario also introduces the techniques for reporting off of a parameterized stored
procedure. The SalesByCategory stored procedure accepts two parameters, category
name and order year, and returns the total sales dollars for each product under the
requested category.

The sample code for the Visual report can be found in the CRWindowsSamples
application. The frmVisual form and Visual.rpt report demonstrate all of the techniques
described here.

Report Layout

Add a new Windows form to the project and name it “frmVisual”. Add a ComboBox,
DateTimePicker, Button, two Labels, and the CrystalReportViewer control to the form.
Lay the controls out on the form as depicted in the figure below.

Set the following properties:

frmVisual

Property Name Value

AcceptButton btnRunReport

Text Visual Report Scenario

WindowState Maximized

Name frmVisual

Paul Delcogliano, Progressive Systems Consulting, Inc., http://www.progsys.com

Paul Delcogliano, Progressive Systems Consulting, Inc., http://www.progsys.com

ComboBox

Property Name Value

Name cmbCategory

DropDownStyle DropDownList

DateTimePicker

Property Name Value

Name cmbYear

CustomFormat yyyy

Format Custom

MaxDate 12/31/1998

MinDate 01/01/1996

Value 12/31/1998

Button

Property Name Value

Name btnRunReport

Text Run

Label

Property Name Value

Name lblYear

Text Year:

AutoSize True

Label

Property Name Value

Name lblCategory

Text Category:

AutoSize True

CrystalReportViewer

Property Name Value

Anchor Top, Bottom, Left, Right

After designing the form, add a new report object to the project by right-clicking on the
project name in the Solution Explorer and choosing Add | Add New Item…. Select the
Crystal Report object and name it “Visual.rpt”. Click OK to start the Standard Expert.

Review the section Database Connection Used by Windows Based Reports in appendix A
to establish the connection to the database using a data link file. After establishing the
connection to the database, select the SalesByCategory stored procedure and click the
Insert Table button. Next, click the Fields tab in the Expert to add the fields from the
stored procedure to the report. Click the Add All -> button. After selecting the fields,
click on the Chart tab in the Expert.

Configuring a chart for the report is simplified with the Expert. This report uses a bar
chart to display results. Select the Bar chart type and click on the button representing
the 3D side-by-side chart layout, as shown below. Click the Data tab to setup the data
for the chart axes.

The data for the chart is grouped by product name. The total sales for the year for each
product under a given category are displayed in the chart. Select the
SalesByCategory;1.ProductName field from the list of available fields and add it to the
list box under the On Change of drop down by clicking the button with the right arrow on
it (>). Next, select the SalesByCategory;1.TotalPurchase field and add it to the Show
Value(s) list box by clicking the second button with the right arrow on it >. After
specifying the data, the form should appear as it does in the screen shot below.

Paul Delcogliano, Progressive Systems Consulting, Inc., http://www.progsys.com

The Visual report uses custom text for the group, data, and report titles. Click on the
Text tab; uncheck the Auto-Text option for Title, Group title, and Data title. Remove
any default values in those title textboxes. The final result should look like the following
screen shot.

Paul Delcogliano, Progressive Systems Consulting, Inc., http://www.progsys.com

The last step is to set the report’s style. Click on the Expert’s Style tab, choose the
Maroon/Teal Box option and click the Finish button. When viewed in the designer, the
report should look similar to the one below.

Paul Delcogliano, Progressive Systems Consulting, Inc., http://www.progsys.com

A few additional layout changes improve the effectiveness of the report. This report
retrieves data based on criteria chosen by the user. The report is enhanced by displaying
the chosen criteria in the report title.

Drag the category name (?@CategoryName) and order year (?@OrdYear) parameters
from the Fields Explorer, and drop them in the report header section just above the
graph. Add a Text object between the two parameter fields and set the text to “Sales by
Product for”. This will become the report header.

Increase the size of the graph to improve readability. Resize the graph so that it takes
up the full width of the report.

Change the location of the chart’s legend by right-clicking on the chart and choosing
Format Chart > | General… from the menu. The Chart Options dialog loads. From the
options, choose the Look tab. In the Markers and Text drop down, select the Markers
to Left of Text item. In the Layout drop down, select the Legend Below Chart item.
This places the legend below the chart, giving the chart more room to display data
horizontally. Click OK to accept the layout changes.

Paul Delcogliano, Progressive Systems Consulting, Inc., http://www.progsys.com

The final layout change is to change the data labels. The labels use shorthand to
represent values in the thousands (K). Right-click on the chart, and choose Format
Chart > | Grid… from the menu. The following dialog appears.

Click on the Data Axis tab on the left hand side of the form. Next, click on the
Numbers tab on the top of the form. Select the Thousands item from the Abbreviation
drop down. Click OK to close the form and accept the changes. The report layout is
complete and should look similar to the following.

Paul Delcogliano, Progressive Systems Consulting, Inc., http://www.progsys.com

Putting it Together

The completed report needs to be bound to the viewer. The sample report uses a
ReportDocument object to perform the binding. Add a ReportDocument component to
the frmVisual form by dragging it from the Toolbox and dropping it onto the form. Select
the CRWindowsSamples.Visual typed report from the Name: drop down and click the
OK button. An instance variable named “visual1” is added to the form. Report binding
occurs using the visual1 instance variable.

In addition to binding the report, the ReportDocument exposes the SetParameterValue
method. As its name implies, the SetParameterValue method passes parameter values
to the report’s stored procedure.

Code in the btnRunReport’s click event sets the reports stored procedure parameters to
values selected in the cmbCategory and cmbYear combo boxes. After setting the
parameters, the viewer is bound to the visual1 ReportDocument, which generates and
displays the report. The following code in the btnRunReport button’s click event sets the
stored procedure parameters and binds the report.

 Cursor.Current = System.Windows.Forms.Cursors.WaitCursor

 Cursor.Show()

 Try

Paul Delcogliano, Progressive Systems Consulting, Inc., http://www.progsys.com

Paul Delcogliano, Progressive Systems Consulting, Inc., http://www.progsys.com

 ' set the report parameters

 With visual1

 .SetParameterValue("@CategoryName", _

 cmbCategory.SelectedValue)

 .SetParameterValue("@OrdYear", cmbYear.Text)

 End With

 ' bind the report to the strongly typed

 ' ReportDocument (visual1) object

 CrystalReportViewer1.ReportSource = visual1

 Catch ex As Exception

 MessageBox.Show(ex.Message, _

 "Could not create report", MessageBoxButtons.OK)

 Finally

 Cursor.Current = System.Windows.Forms.Cursors.Default

 Cursor.Show()

 End Try

When the form loads, the cmbCategory drop down is populated from the Categories
table in the Northwind database. Add the following code to frmVisual’s load event to
populate the drop down.

 ' connect to the database using

 ' Windows authentication.

 ' in a production environment, do not

 ' hard code the connection string,

 ' or use "inline" SQL statements.

 ' load the category drop down with

 ' category values from the database

 Dim da As New SqlDataAdapter _

 ("Select CategoryName from Categories", _

 "Data Source=localhost;initial catalog=northwind;" & _

 "Integrated Security=SSPI;Persist Security Info=False;")

 Dim ds As New DataSet("Categories")

Paul Delcogliano, Progressive Systems Consulting, Inc., http://www.progsys.com

 Try

 Cursor.Current = System.Windows.Forms.Cursors.WaitCursor

 Cursor.Show()

 da.Fill(ds)

 With cmbCategory

 .DataSource = ds.Tables(0)

 .DisplayMember = "CategoryName"

 .ValueMember = "CategoryName"

 End With

 Catch ex As Exception

 MessageBox.Show(ex.Message, _

 "Could not load categories", MessageBoxButtons.OK)

 Finally

 da.Dispose()

 Cursor.Current = System.Windows.Forms.Cursors.Default

 Cursor.Show()

 End Try

To see the report in action, set the project’s startup object to frmVisual and run the
application by pressing F5. Select the Condiments category and default year (1998) and
click on the Run button to generate the report. The report should appear similar to the
following.

The following list summarizes the steps taken in this section to create the sample report.

• Add a new Crystal Report object to the project.

• Layout the report using the Standard Expert

o Connect to the database

o Add stored procedure to the report

o Select the columns from the table to appear on the report

o Add a chart to the report

 Specify the data to display in the chart

 Format the chart

o Set the report style

• Add a CrystalReportViewer control to the windows form in the project.

• Bind the report to the viewer through code.

o Gather stored procedure parameters data from the form and apply them
to the report’s stored procedure using the ReportDocument’s
SetParameterValue method.

o Bind the report to the viewer using the ReportSource property.

Scenario Conclusion

The Visual reporting scenario builds on the Intermediate scenario by adding charting and
reporting on parameterized stored procedures. Colorful charts permit users to make
snap decisions from report data. The Crystal Report Experts quickly add and configure
Paul Delcogliano, Progressive Systems Consulting, Inc., http://www.progsys.com

Paul Delcogliano, Progressive Systems Consulting, Inc., http://www.progsys.com

charts for any report. Reporting based on parameterized stored procedures is facilitated
through a strongly typed ReportDocument’s SetParameterValues method.

While charting is a great way to enrich a report, the next scenario, Sub-report, further
enhances reporting by embedding a report within a report.

Paul Delcogliano, Progressive Systems Consulting, Inc., http://www.progsys.com

Sub-report Reporting Scenario
Two separate reports can be combined into one using the sub-report features provided
by Crystal Reports. A sub-report is a report embedded within a report. A sub-report is
not required to be related to the container report (main report).

Sub-reports can be unlinked or linked. Unlinked sub-reports are not related to the main
report in any way. Linked reports are related to the main report. When linking reports, a
parameter field is used to coordinate the data between the two reports. The sub-report
uses the parameter in a selection formula to display only the data associated with the
main report’s link field. Performance can be a concern when linking a sub-report to a
main report because a sub-report is created for each record in the main report.

Performance suffers if the sub-report contains large amounts of data. To prevent
performance degradation, a sub-report can be configured to run “on-demand”. On-
demand sub-reports are displayed as hyperlinks in the main reports. Sub-report data is
only retrieved when a user clicks on the hyperlink.

This scenario expands on the customer listing report created in the Basic scenario by
linking the report to a sub-report of orders. Sub-reports are displayed on-demand, using
a hyperlink. The reports are created as standalone report files and deployed as part of a
Web application. Data for the sub-report is collected using an ADO.NET typed DataSet.

The sample report uses the GetCustomers_sp stored procedure to retrieve data for the
main report (Customers.rpt) and the GetOrdersForCustomer_sp to retrieve data for the
sub-report (Orders.rpt).

The report and sub-report in this scenario get their data from typed ADO.NET DataSets.
Create two typed DataSets; one for customer data and one for order data. The process
to create a typed DataSet is shown in the Visual scenario section above. The customer
DataSet is based on the GetCustomers_sp stored procedure. After adding the stored
procedure to the DataSet designer, name the DataSet “CustomersDS” and name the
DataTable “CustomerData”. The CustomersDS DataSet should look like the DataSet
depicted below.

The order DataSet is based on the GetOrdersForCustomer_sp. Again, after adding the
stored procedure to the designer, name the DataTable “OrdersData”. The OrdersDS
DataSet should look like the DataSet depicted below.

The next step is to create the sub-report, CustomerOrders.rpt. Add a new Crystal Report
object to the project and name it “CustomerOrders.rpt”. This report will show the orders

Paul Delcogliano, Progressive Systems Consulting, Inc., http://www.progsys.com

associated with a given customer. Using the Standard Expert, select the OrderData
DataTable from the list of available data sources. The OrderData DataTable can be found
by expanding the Project Data | ADO.NET DataSets | CRWebSamples.OrdersDS nodes.

Select all available fields to display on the report from the Expert. Set the report style to
Maroon/Teal Box.

Next, create the main report. Add a new report to the project and name it
“Customers.rpt”. This report lists the customers in the customer table and will contain a
linked sub-report. Use the Standard Expert to select the CustomerData DataTable, all
fields, and to set the style to Maroon/Teal Box. Close the Expert to view the report in the
design window.

Report Layout

The main report should look similar to the one pictured below. The next step is to embed
the sub-report within the main report. Right-click on the report and choose Insert |
Subreport…. Drop the sub-report object into the Details section of the report. Expand
the height of the Details section if necessary.

A dialog window opens to guide the process of adding the sub-report. The source of the
sub-report can be an existing report in the project, a report file, or a new report. Choose
the Choose a Crystal Report in Project option and select the CustomerOrders.rpt
from the drop down list. This main report use on-demand linking. Place a check in the
On-demand Subreport checkbox to set up on-demand linking.

Paul Delcogliano, Progressive Systems Consulting, Inc., http://www.progsys.com

Next, click the Link tab. The Link tab provides the details of how the two reports are
related to one another. The reports used in this scenario are related by CustomerID.
From the Available Fields list, select the CustomerData.CustomerID field and click the >
button to add the field as a link field.

Report linking uses a parameter field to associate the sub-report with the main report.
From the Subreport parameter field to use drop down, select the ?Pm-
CustomerData.CustomerId value. Check the Select data in subreport based on
field checkbox and select the CustomerID value from the drop down. The dialog
window should look like the following screen shot.

Paul Delcogliano, Progressive Systems Consulting, Inc., http://www.progsys.com

Click OK to accept the values and close the dialog. The following screen shot shows how
the customers report should look after the sub-report has been embedded within it.

To make the report more presentable, increase the font size of the database field
objects to a comfortable size. Change the following properties of the sub-report.

Property Name Value

Name CustomerOrders

Subreportname Customer Orders

By default the hyperlink text used to display the on-demand sub-report is the report
name. Luckily, this text can be changed to something more meaningful. To change the

Paul Delcogliano, Progressive Systems Consulting, Inc., http://www.progsys.com

hyperlink text, right-click on the sub-report object embedded in the main report and
select the Format… option from the menu. Click on the Subreport tab as shown below.

Click on the Formula button to the right of the On-demand subreport caption option.
This opens the Format Formula Editor dialog. For this sample, the hyperlink text will be
the static text “View Orders”. Enter “View Orders” (quotes included) in the formula
editor textbox on the bottom of the form, as shown below. Click the save button to save
the report formula.

Paul Delcogliano, Progressive Systems Consulting, Inc., http://www.progsys.com

The reports are set up and ready to run. The next step is to set up a Web form that will
contain the report. Add a new Web form to the project and name it “Subreport.aspx”.
Add a CrystalReportViewer control and a ReportDocument component to the form. Set
up the ReportDocument component so that it is based on the customers typed report.

Putting it Together

With the reports and form created, the final steps involve getting the data and binding
the reports to the data. Code in the Web form’s Page_Load event fills two typed
ADO.NET DataSets. These datasets provide the data for the main and sub-report.

After the DataSets are filled, they are assigned as data sources to the main report and
sub-report ReportDocuments using the SetDataSource method. The main report
ReportDocument object is the one added to the form at design time, Customers1. The
ReportDocument exposes the ReportObjects collection from its ReportDefinition
property. The ReportObjects collection contains all of the objects in the report, from text
objects, to field objects. One of the items in the collection is the Subreport object
embedded in the report. The sub-report object is retrieved from the collection and
assigned to a Subreport Object with the following line of code.

 subreportObject = customers1.ReportDefinition. _

 ReportObjects.Item("CustomerOrders")

Next, the sub-report object’s name is retrieved from the SubreportObject and assigned
to a local variable.

Paul Delcogliano, Progressive Systems Consulting, Inc., http://www.progsys.com

Paul Delcogliano, Progressive Systems Consulting, Inc., http://www.progsys.com

 subreportName = subreportObject.SubreportName

The code then calls the main (customers1) ReportDocument’s OpenSubreport method.
The OpenSubreport method opens the sub-report embedded in the main report and
returns a ReportDocument Object corresponding to the named sub-report. The
ReportDocument object returned is assigned to the ReportDocument variable
“CustomerOrders”.

 CustomerOrders = customers1.OpenSubreport(subreportName)

The CustomerOrders ReportDocument represents the sub-report embedded in the main
report. Set its data source to the typed disorders DataSet.

 CustomerOrders.SetDataSource(dsOrders)

The report is now ready to run. To run the report, set the SubReport.aspx page as the
startup page by right-clicking on the file in the Solution Explorer window and selecting
the Set as Start Page option from the menu. The complete code listing for the
Page_Load event is shown below.

 Private Sub Page_Load(_

 ByVal sender As System.Object, _

 ByVal e As System.EventArgs) Handles MyBase.Load

 'Put user code to initialize the page here

 ' get all of the data for the report and sub-report

 Const db_connection As String = _

 "data source=localhost;initial catalog=northwind;" _

 & "user id=crreports;password=crreports;"

 Dim daNorthwind As New SqlClient.SqlDataAdapter(_

 "GetCustomers_sp", db_connection)

http://msdn.microsoft.com/library/en-us/crystlrf/html/crlrfreportdocumentclasstopic.asp

Paul Delcogliano, Progressive Systems Consulting, Inc., http://www.progsys.com

 Dim dsCust As New CustomersDS

 Dim dsOrders As New OrdersDS

 ' use the same adapter to get both datasets

 With daNorthwind

 .SelectCommand.CommandType = _

 CommandType.StoredProcedure

 ' map the generic "Table" to the typed

 ' datatable named CustomerData"

 .TableMappings.Add("Table", "CustomerData")

 ' fill the customer dataset

 .Fill(dsCust)

 .TableMappings.Clear()

 .SelectCommand.CommandText = _

 "GetOrdersForCustomer_sp"

 ' re-map the generic "Table" to the typed

 ' datatable named OrdersData"

 .TableMappings.Add("Table", "OrdersData")

 ' fill the order dataset

 .Fill(dsOrders)

 End With

 ' get the sub-report object from

 ' the main Customers1 ReportDocument

 Dim subreportName As String

 Dim subreportObject As SubreportObject

 Dim CustomerOrders As New ReportDocument

 ' Get the ReportObject by name as a

 ' SubreportObject.

 subreportObject = customers1.ReportDefinition. _

Paul Delcogliano, Progressive Systems Consulting, Inc., http://www.progsys.com

 ReportObjects.Item("CustomerOrders")

 ' Get the sub-report name.

 subreportName = subreportObject.SubreportName

 ' Open the sub-report as a ReportDocument.

 CustomerOrders = customers1.OpenSubreport(subreportName)

 ' set the subreport's data source

 ' to the orders typed dataset

 CustomerOrders.SetDataSource(dsOrders)

 ' set the main report document's data source

 ' to the customers typed dataset

 customers1.SetDataSource(dsCust)

 CrystalReportViewer1.ReportSource = customers1

 dsOrders.Dispose()

 dsCust.Dispose()

 daNorthwind.Dispose()

 End Sub

When the report runs, the user is first presented with a list of customers. Underneath
each customer is a hyperlink labeled View Orders.

If the user clicks on the hyperlink, the CustomerOrders sub-report loads and is displayed
in the browser.

The following list summarizes the steps taken in this section to create the sample report.

• Create two strongly typed DataSets and add them to the project

o Drop a stored procedure on the DataSet at design time from the Server
Explorer

• Add a new Crystal Report object to the project for the sub-report report

Paul Delcogliano, Progressive Systems Consulting, Inc., http://www.progsys.com

Paul Delcogliano, Progressive Systems Consulting, Inc., http://www.progsys.com

• Add a new Crystal Report object to the project for the main report

• Use the Standard Expert to format each report and set the appropriate data
sources

• Add a new web form to the project

o Add the CrystalReportViewer control to the form

o Drag a ReportDocument component from the Toolbox and drop it on the
web form. Set its typed ReportDocument class property to the proper
typed report document object

o Add code to the form’s Page_Load event to retrieve data using the typed
DataSets

o Add code to get a ReportDocument object, representing the embedded
sub-report, from the main ReportDocument object

o Add code to the form’s Page_Load event to set the sub-report and main
report data sources to the respective DataSets

Scenario Conclusion

This scenario described the steps to take to embed a report within another. Robust
reporting solutions can be created by combining two separate reports into one. Crystal
Report’s sub-report feature embeds a sub-report within a container report seamlessly.
Sub-reports can be linked or unlinked. For performance considerations, linked reports
should be configured to run on-demand.

The scenario also explained how to use ADO.NET typed datasets as report data sources.

The next scenario continues to generate reports based on ADO.NET typed datasets. It
also describes how to export reports to PDF with Crystal Reports for Visual Studio.NET
2003.

Document Reporting Scenario
The Legal Document scenario illustrates how Crystal Reports can be used to generate
legal documents, such as contracts or invoices, which are viewable in PDF format. The
sample web form and report can be found in the CRWebSamples project. This report is
created without the help of the Crystal Experts.

This scenario differs from the previous ones because it does not use the
CrystalReportViewer control. Rather, the report is exported directly to PDF where it is
streamed to the Web browser and displayed in Internet Explorer. A scenario such as this
has all sorts of useful implementations, including business to business applications
where legal documents are binding contracts. The exporting features provided by Crystal
Reports are highlighted by the sample invoice document created here. The sample code
retrieves data using the custom parameterized stored procedure,
GetInvoiceForCustomer_sp

Next, create a typed dataset based on the GetInvoiceForCustomer_sp. Add a dataset to
the project named “Invoice.xsd” by right-clicking on the CRWebSamples project in the
Solution Explorer. Choose Add | Add New Item… and select the DataSet object from
the ensuing dialog. Name the DataSet, “InvoiceDS.xsd” as shown below.

Click Open to add the DataSet to the project. The InvioceDS opens in design mode.
Open the Server Explorer window. Starting with the Servers node, drill down to the
GetInvoiceForCustomer_sp node (as shown below).

Paul Delcogliano, Progressive Systems Consulting, Inc., http://www.progsys.com

After locating the GetInvoiceForCustomer_sp node, drag it from the Server Explorer
window and drop it onto the InvoiceDS DataSet. Dropping the stored procedure onto the
DataSet creates a typed DataSet whose schema is defined by the columns returned by
GetInvoiceForCustomer_sp. The DataSet should be similar to the following screen shot
when viewed in design view.

Paul Delcogliano, Progressive Systems Consulting, Inc., http://www.progsys.com

Add a new report to the project named InvoiceDoc.rpt. When prompted choose the
Blank Expert. The data source for this report is the typed DataSet, InvoiceDS created
above. Right-click on the report and choose Database | Add/Remove Database…
from the context menu. From the list of available data sources, expand the ADO.NET
DataSets node, and then expand the CRWebSamples.InvoiceDS node. Select the
GetInvoicesForCustomer_sp node and click the > button to add it to the list of
selected tables. The following screen shot shows the results of this operation.

Paul Delcogliano, Progressive Systems Consulting, Inc., http://www.progsys.com

Report Layout

Click OK to close the Database Expert dialog. Drag the following fields from the Field
Explorer window onto the report. Fields added to the report will be displayed with a red
check to the left of their names in the Field Explorer, as shown below.

• Add the following fields to the Report Header section

o ShipName

o ShipAddress

o ShipCity

o ShipRegion

o ShipPostalCode

o ShipCountry

o CustomerName

o Address

o City

o Region

o PostalCode

o Country

o Salesperson

o OrderDate

o ShippedDate

Paul Delcogliano, Progressive Systems Consulting, Inc., http://www.progsys.com

• Add the following fields to the Details section

o ProductName

o UnitPrice

o Quantity

o Discount

o ExtendedPrice

Arrange the fields on the report as shown below. Insert a subtotal field which sums the
ExtendedPrice field. Place the subtotal field under in the Group Header section.

Paul Delcogliano, Progressive Systems Consulting, Inc., http://www.progsys.com

Next, create the form that will display the InvoiceDoc report in the browser. Add a new
Web form to the project and name it “Document.aspx”. Add five controls to the form;
two labels, two drop down lists, and one button. Set the following properties for the
controls.

Button

Property Name Value

Name btnRunReport

Text Run

Label

Property Name Value

Name lblCustomer

Text Customer:

Label

Property Name Value

Name lblOrderID

Text Order ID:

DropDownList

Property Name Value

Name cmbCustomer

Paul Delcogliano, Progressive Systems Consulting, Inc., http://www.progsys.com

AutoPostBack True

DropDownList

Property Name Value

Name cmbOrders

Arrange the controls as shown below.

Drag a ReportDocument object from the Toolbox and drop it on the Document.aspx
form. Choose the InvoiceDoc typed ReportDocument object from the drop down and
uncheck the Generate cached strongly-typed report option. Click OK to add the
ReportDocument to the form.

Putting it Together

At this point, the report and the form are set up. The remaining steps involve populating
the customer and order id controls with data from the database, binding the data
returned from the stored procedure to the ReportDocument object, and exporting the
report to PDF format. The following code shows the Document.aspx page load event.
Code in this event populates the cmbCustomer control with customer names from the
database.

Paul Delcogliano, Progressive Systems Consulting, Inc., http://www.progsys.com

 Private Sub Page_Load(ByVal sender As System.Object, _

Paul Delcogliano, Progressive Systems Consulting, Inc., http://www.progsys.com

 ByVal e As System.EventArgs) Handles MyBase.Load

 If Not Page.IsPostBack Then

 ' get customers from db and display in drop down list

 Dim daCustomers As New SqlClient.SqlDataAdapter(_

 "SELECT CustomerID, CompanyName FROM Customers", _

 DB_CONNECTION)

 Dim dsCustomers As New DataSet("Customers")

 daCustomers.Fill(dsCustomers)

 cmbCustomer.DataSource = dsCustomers

 cmbCustomer.DataTextField = "CompanyName"

 cmbCustomer.DataValueField = "CustomerID"

 cmbCustomer.DataBind()

 daCustomers.Dispose()

 dsCustomers.Dispose()

 ' Populate the orders drop down

 ' based on the first customer

 GetOrdersForCustomer()

 End If

 End Sub

After populating the cmbCustomer control, the code populates the cmbOrderID control
based on the first customer returned from the database. The GetOrdersForCustomer
method, shown below, populates the cmbOrderID control.

Private Sub GetOrdersForCustomer()

 ' get orders from db and display in drop down list

Paul Delcogliano, Progressive Systems Consulting, Inc., http://www.progsys.com

 Dim daOrders As New SqlClient.SqlDataAdapter(_

 "SELECT OrderID FROM Orders WHERE customerid = @CustomerID", _

 DB_CONNECTION)

 Dim dsOrders As New DataSet("Orders")

 daOrders.SelectCommand.Parameters.Add(_

 "@CustomerID", cmbCustomer.SelectedValue)

 daOrders.Fill(dsOrders)

 cmbOrders.DataSource = dsOrders

 cmbOrders.DataTextField = "OrderID"

 cmbOrders.DataValueField = "OrderID"

 cmbOrders.DataBind()

 daOrders.Dispose()

 dsOrders.Dispose()

 End Sub

The GetOrdersForCustomer method populates the cmbOrderID dropdownlist with all of
the order id’s related to a specific customer. The customer parameter comes from the
value selected in the cmbCustomer dropdownlist. In addition to being called from the
Page_Load event, GetOrdersForCustomer is also called from the cmbCustomer’s
SelectedIndexChanged event, ensuring that whenever a new customer is selected from
the list of customers, the related orders are retrieved and displayed in the cmbOrderID
control. The code in the SelectedIndexChanged event is shown below.

Private Sub cmbCustomer_SelectedIndexChanged(_

 ByVal sender As Object, _

 ByVal e As System.EventArgs) _

 Handles cmbCustomer.SelectedIndexChanged

 ' load the orders for a specific customer

 GetOrdersForCustomer()

 End Sub

Paul Delcogliano, Progressive Systems Consulting, Inc., http://www.progsys.com

Code behind the btnRunReport button gets the selected customer and order id from the
cmbCustomer and cmbOrderID controls respectively. Those values are used as
parameters for the GetInvoicesForCustomer_sp procedure. The results of executing the
stored procedure are returned in the InvoiceDS typed dataset and then bound to the
InvoiceDoc1 ReportDocument object. These steps are accomplished in the first half of
the button’s click event, shown in the following code.

 Private Sub btnRunReport_Click(_

 ByVal sender As System.Object, _

 ByVal e As System.EventArgs) _

 Handles btnRunReport.Click

 ' get data from database into typed dataset

 Dim da As New SqlClient.SqlDataAdapter(_

 "GetInvoiceForCustomer_sp", DB_CONNECTION)

 Dim ds As New InvoiceDS

 ' set the stored procedure parameter values

 With da.SelectCommand

 .CommandType = CommandType.StoredProcedure

 .Parameters.Add("@CustomerID", cmbCustomer.SelectedValue)

 .Parameters.Add("@OrderID", cmbOrders.SelectedValue)

 End With

 ' map the generic "Table" to the typed

 ' dataset table named "GetInvoiceForCustomer_sp

 da.TableMappings.Add("Table", "GetInvoiceForCustomer_sp")

 ' fill the dataset

 da.Fill(ds)

 ' set the report document's data source to the dataset

 invoiceDoc1.SetDataSource(ds)

The remaining code in the click event formats the report as PDF and displays it in the
browser. Here is where the report in this scenario differs from the reports described

Paul Delcogliano, Progressive Systems Consulting, Inc., http://www.progsys.com

above. The CrystalReportViewer object is not used to display the results. Instead, the
report results are streamed out to the browser in PDF format.

The report is exported to a stream object using the ExportToStream method of the
ReportDocument (invoiceDoc1) object. ExportToStream takes one parameter of the
type, ExportFormatType. The ExportFormatType parameter sets the report’s exported
format type. In addition to PDF, exported formats include Excel, Word, HTML, and
RichText.

 st = invoiceDoc1.ExportToStream(_

 ExportFormatType.PortableDocFormat)

The stream returned from the ExportToStream method call is assigned to a local
instance of a .NET Stream object (the st variable in the code) where it is converted into
a byte array using the Stream’s Read method. The byte array is written to the browser
using the Response object’s BinaryWrite method. As its name implies, the BinaryWrite
method writes a string of binary characters to the HTTP output stream. In this case, the
output stream is to the browser.

It is important to note that the ExportToStream method creates temporary files to
export the report to the requested format. These files could hinder scalability in a Web
application due to the overhead required to managing them.

To complete the solution, the MIME type is set to PDF using the Response object’s
ContentType property. This informs the browser that the stream data is in PDF format
and starts the Acrobat Reader plug-in in Internet Explorer.

 ' create the stream object

 Dim st As System.IO.Stream

 st = invoiceDoc1.ExportToStream(_

 ExportFormatType.PortableDocFormat)

 ' set the http headers

 Response.ClearContent()

 Response.ClearHeaders()

 ' set the MIME type to PDF

 Response.ContentType = "application/pdf"

 ' read the stream as binary (a byte array) and

 ' write the byte array to the browser

 Dim b(st.Length) As Byte

 st.Read(b, 0, st.Length)

 Response.BinaryWrite(b)

 Response.End()

 End Sub

Before running the sample report, set the Document.aspx page as the start up page by
right-clicking on the Document.aspx page in the Solution Explorer window and selecting
the Set as Start Page as shown below.

Press the F5 key to run the report. After the form loads (shown below), select a
customer and an order id and click the Run button.

Paul Delcogliano, Progressive Systems Consulting, Inc., http://www.progsys.com

The report loads as a PDF document (shown below) instead of a Crystal Reports
document.

The following list summarizes the steps taken in this section to create the sample report.

Paul Delcogliano, Progressive Systems Consulting, Inc., http://www.progsys.com

Paul Delcogliano, Progressive Systems Consulting, Inc., http://www.progsys.com

• Add a strongly typed DataSet to the project

o Drop a stored procedure on the DataSet at design time from the Server
Explorer.

• Add a new Crystal Report object to the project.

• Manually layout the report using the Blank Expert

o Set the report’s Data Source to the typed Dataset

o Drag and drop fields from the Field Explorer to the report’s details section

• Add a new web form to the project

o Add controls to the form to run the report

o Drag a ReportDocument component from the Toolbox and drop it on the
web form. Set its typed ReportDocument class property to the proper
typed report document object.

o Add code to the form’s Page_Load event to populate the dropdownlist
controls.

o Add code to the button’s click event to retrieve data using the typed
DataSet. Set the ReportDocument’s ReportSource property to the
populated DataSet

o Add code to export the ReportDocument to a binary PDF stream. Set
appropriate properties for the desired format. Stream the binary data to
the browser using the Response object.

Scenario Conclusion

Generating legal documents is a powerful feature added to any application. The
“Document” scenario was designed to walk through the steps required to produce legal
quality documents using Crystal Reports. Crystal Reports’ exporting features facilitate
this process.

Furthermore, reports based on ADO.NET DataSets are a common requirement. This
scenario reinforced the methods used for reporting on DataSets that were introduced in
the “Sub-report” scenario above.

The reporting scenarios discussed above have all focused on developing robust reports
using Crystal Reports for Visual Studio.NET 2003. Designing and developing reports is
only half of a complete solution. Reports are worthless if they cannot be deployed. The
next section discusses deployment issues found in different application environments
and provides solutions to common deployment problems.

Deployment
By default, reports that are added to a .NET application are added as embedded
resources. This means that the reports are compiled into the application’s assembly. The
reports will not be loaded from separate files. Embedding reports eliminates the need to
distribute separate report files with the application. Applications take advantage of
embedded reports through strongly typed ReportDocument objects. However, there is a
disadvantage to embedding report in the assembly. Changes made to reports require
the application to be recompiled and redeployed.

To prevent reports from being compiled into the assembly, select the report in the
Solution Explorer and right-click on the report name. Choose the Properties option.
From the Properties window, change the Build Action property from Embedded
Resource to None.

Reports not compiled into the assembly are loaded using the ReportDocument’s Load()
method. Also, the report files must be manually added to the setup project to be
distributed with the application. When reports are not compiled into the assembly, the
application cannot use strongly typed ReportDocument objects, but can modify and
redeploy a report without recompiling the application.

Merge Modules

Crystal Reports for Visual Studio.NET 2003 uses merge modules for deployment. Other
deployment options are available with the stand alone version of Crystal Reports. Merge
modules are provided for developers who want to include Crystal Reports runtime files
along with their application.

A merge module is a simplified installer file. Merge modules install components used by
the application. Crystal Reports merge modules need to be added to the setup project to
successfully deploy an application that provides reporting functionality. Different
versions of Crystal Reports require different merge module files. For Crystal Reports for
Visual Studio.NET 2003, the following merge modules are required.

File Name Description

Crystal_Managed2003.msm Used to install the Crystal Reports for
VS.NET managed components

Crystal_Database_Access2003.msm Used to install database drivers used by the
reports. Also installs export destinations

Paul Delcogliano, Progressive Systems Consulting, Inc., http://www.progsys.com

Paul Delcogliano, Progressive Systems Consulting, Inc., http://www.progsys.com

and format drivers.

Crystal_Database_Access2003_enu.msm Installs language specific components. Also
installs PDF components.

Crystal_RegWiz2003.msm Configures registration and licensing. A
license key must be provided for this
module when building a setup project.

VC_User_CRT71_RTL_X86_---.msm and
VC_User_STL71_RTL_X86_---.msm

Optional. Required only when reports use
ADO.NET DataSet objects.

By default, these files are located in the C:\Program Files\Common Files\Merge
Modules\ folder.

License Key

When Crystal_RegWiz2003.msm is added to a setup project, it exposes a LicenseKey
property. The LicenseKey property accepts a 19 digit license key value. The license key
value was emailed when Crystal Reports was registered and can also be found in the
Help | About menu in VS.NET 2003. Enter the license key value into the LicenseKey
property.

An error will occur when the setup project is built if the LicenseKey property is not set.
The three most common errors are:

• “Invalid or missing KeycodeV2.dll” – see Kbase c2010681

• “Job Failed Because a Free License Could not be Obtained” – see Kbase c2012716

• “Err Msg: Cannot Find keycodev2.dll or invalid keycode” appears in VS.NET – see
Kbase c2011205

Application Deployment

This section discusses the steps needed to create a setup project to deploy the reporting
application. The steps for deploying a Windows application are similar to those for
deploying a Web application. Areas where the procedures differ are called out.

• Right click on the solution in the Solution Explorer window. Choose Add |
New Project… from the menu.

• For a Web application, choose the Setup and Deployment Projects folder
in the left pane, then select the Web Setup Project icon in the right pane.

http://support.businessobjects.com/library/kbase/articles/c2010681.asp
http://support.businessobjects.com/library/kbase/articles/c2012716.asp
http://support.businessobjects.com/library/kbase/articles/c2011205.asp

• For a Windows application, choose the Setup and Deployment Projects folder
in the left pane, then select the Setup Project icon in the right pane.

• Right-click on the Setup Project file in the Solution Explorer window and choose
Add > | Project Output… from the menu.

Paul Delcogliano, Progressive Systems Consulting, Inc., http://www.progsys.com

• For Web applications, select the Primary output and Content Files items from
the list and click OK.

• For Windows applications, select the Primary output option from the list and
click OK

Paul Delcogliano, Progressive Systems Consulting, Inc., http://www.progsys.com

• Project dependencies will be detected with the OK button is clicked.

• Add the merge modules listed above to the setup project by right-clicking the
setup project in the Solutions Explorer window and selecting Add > | Merge
Module… from the menu. Select the appropriate files from the dialog.

Paul Delcogliano, Progressive Systems Consulting, Inc., http://www.progsys.com

• If the application’s reports use ADO.NET DataSets, add the
VC_User_CRT71_RTL_X86_---.msm and VC_User_STL71_RTL_X86_---.msm
merge modules files as well.

• Right click on the Crystal_RegWiz2003.msm file a view its properties. Expand the
MergeModuleProperties property to enter the 19 digit license key value. The
license key can be obtained from Help | About in VS.NET 2003.

To deploy the application, right click on the setup project in the Solution Explorer
window and choose the Build option. Once the project is built, it is ready to deploy to
the appropriate platform.

Conclusion
This document introduced Crystal Reports for Visual Studio.NET through five common
reporting scenarios. The scenarios built upon one another. Each sample report described
one or more features and discussed how to implement each feature in the report.

The Basic scenario created a simple Windows report listing customers from the sample
database. Report Experts did most of the work designing the report. Data was retrieved
directly from the customers table.

Drill down capabilities was the highlighted feature in the Intermediate scenario. Drill
down enables users to view the detail records that make up a summary record. This
report introduced on the idea of retrieving data from views and the ReportDocument
object. The ReportDocument object exposes properties and methods to

Paul Delcogliano, Progressive Systems Consulting, Inc., http://www.progsys.com

Paul Delcogliano, Progressive Systems Consulting, Inc., http://www.progsys.com

programmatically run a report. This scenario also introduced Web based reporting using
the CrystalReportViewer control.

The Visual scenario showed off some of Crystal Reports charting strengths with a chart
of product sales for a specific product category. It introduced methods and code for
creating reports based on a parameterized SQL Server stored procedure. The sample
report expanded on the ReportDocument component that was introduced in the
Intermediate scenario.

The Sub-report scenario demonstrated embedding a report within a report. Performance
considerations were accounted for by configuring the sub-report to load on the click of a
hyperlink.

The Document scenario highlighted Crystal’s exporting features. Legal documents were
created by exporting a report to PDF format and displaying the PDF data in a Web
browser. Features of the ReportDocument object were used to stream the PDF output
directly to the browser, eliminating the need to create temporary files to export the
report.

Finally, the guide walked through the steps required to deploy applications with
reporting capabilities. Reports embedded in the application assembly ease deployment
but may hinder maintenance, while stand alone report files impede deployment but ease
maintenance. In either case, merge modules are necessary to properly install the Crystal
Reports dependency files during deployment.

This startup guide touches on many features available with Crystal Reports for Visual
Studo.NET 2003. These features are designed to ease reporting development and
deployment for programmers and enhance report presentation and functionality for end
users.

About the Author

Paul Delcogliano is director of technology for Progressive Systems Consulting where he
has been developing Windows and Web based applications with Visual Studio .NET since
beta 1. Contact Paul at pdelco@progsys.com

For More Information
• Knowledgebase articles and additional sample code can be obtained at

http://www.businessobjects.com/products/reporting/crystalreports/net/vsnet.asp

• More information about deployment is available at
http://www.businessobjects.com/communityCS/TechnicalPapers/crnet_deployme
nt.pdf

• Visit the DevZone for .NET developers who use products from Business Objects at
http://www.businessobjects.com/products/dev_zone/net/default.asp

mailto:pdelco@progsys.com
http://www.businessobjects.com/products/reporting/crystalreports/net/vsnet.asp
http://www.businessobjects.com/communityCS/TechnicalPapers/crnet_deployment.pdf
http://www.businessobjects.com/communityCS/TechnicalPapers/crnet_deployment.pdf
http://www.businessobjects.com/products/dev_zone/net/default.asp

Appendix A

Database Connection Used by Windows Based Reports

For simplicity, all Windows reports connect to the database using a data link file. The
file, “Northwind.udl”, accompanies the sample code. The file connects to the Northwind
database on a local workstation. It uses Windows authentication to connect to the
database. The information in the data link file may need to be adjusted depending on
the development environment.

For sample Windows applications, connecting to the database is done using the data link
file. Connecting the report to the database occurs during report creation, either with the
help of a report Expert or manually. In either case, the following steps will connect the
report to the database using the data link file.

Click on the OLE DB (ADO) item in the list of available data sources.

A new form will appear, prompting for the selection of an OLE DB provider. Instead of
selecting a provider, check the Use Data Link File checkbox. Browse to the
Northwind.udl file included with the sample code and click Finish.

Paul Delcogliano, Progressive Systems Consulting, Inc., http://www.progsys.com

After selecting the connection information, click the Finish button.

Now that the connection is established, begin selecting the report’s data source as
described in the scenarios above.

Database Connection Used by Web Based Reports

The connection used by the Web based report samples is similar to the one used by the
Windows report samples. The biggest difference is in the method used to authenticate
the user. The Windows sample reports use Windows authentication to connect to SQL
Server. Windows authentication is not a scalable solution for a Web application.
Scalability is limited because each user that accesses the Web site needs a Windows
account. This may be okay for an Intranet application where the number of users is
small. But in an Internet application, Windows authentication doesn’t work well. Rather
than using Windows authentication to connect to SQL Server, the sample Web reports
use SQL Server authentication.

With SQL Server authentication, SQL Server performs the authentication itself by
checking to see if a SQL Server login account has been set up and if the specified
password matches the password on file. If so, authentication is successful.

Authentication can be performed in a variety of methods depending on the server
environment. An article describing best practices for accessing SQL Server from ASP.NET
applications can be found on MSDN.

The samples authenticate with a SQL Server login named “CRReports”. This account only
has access to the Northwind database. A common practice is to use the system
administrator account, a.k.a. “sa”. For security reasons, this is not a good practice.

For sample Web applications, connecting to the database is done using the Database
Expert. Connecting the report to the database occurs during report creation, either with
the help of a report Expert or manually.
Paul Delcogliano, Progressive Systems Consulting, Inc., http://www.progsys.com

http://msdn.microsoft.com/library/en-us/vbcon/html/vbconAccessingSQLServerFromWebApplication.asp

Click on the OLE DB (ADO) item in the list of available data sources.

Expand the OLE DB (ADO) node. Select the OLE DB Provider for SQL Server from the
list of providers.

Paul Delcogliano, Progressive Systems Consulting, Inc., http://www.progsys.com

Click the Next > button to enter the connection information.

After entering the connection information, click the Finish button.

Now that the connection is established, begin selecting the report’s data source as
described in the scenarios above.

Paul Delcogliano, Progressive Systems Consulting, Inc., http://www.progsys.com

	Crystal Reports For VS.Net 2003 Startup Guide
	Overview
	What is the Crystal Reports For VS.NET 2003 Startup Guide?
	Prerequisites
	Sample Code
	Scripts Required to Run the Sample Reports

	Basic Reporting Scenario
	Meet the Experts
	Scenario Conclusion

	Build a Report from Scratch
	Scenario Conclusion

	Visual Reporting Scenario
	Report Layout
	Putting it Together
	Scenario Conclusion

	Sub-report Reporting Scenario
	Report Layout
	Putting it Together
	Scenario Conclusion

	Document Reporting Scenario
	Report Layout
	Putting it Together
	Scenario Conclusion

	Deployment
	Merge Modules
	License Key
	Application Deployment

	Conclusion
	About the Author

	For More Information
	Appendix A
	Database Connection Used by Windows Based Reports
	Database Connection Used by Web Based Reports

